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Objective: Support programmers 
with embedded languages that 
avoid these mistakes, by 
reasoning about hidden state 
automatically.

Polar Lander Leading Diagnosis:

• Legs deployed during descent.

• Noise spike on leg sensors 
latched by software monitors.

• Laser altimeter registers 50ft.

• Begins polling leg monitors to 
determine touch down.

• Latched noise spike read as 
touchdown.

• Engine shutdown at ~50ft. 

Reactive Model-based Programming

Why  Model-based Programming?

Programmers often make 
commonsense mistakes when 
reasoning about hidden state.



Objective

Develop model-based embedded programming languages 
that think from commonsense models in order to robustly 
estimate, plan, schedule, command, monitor, 
diagnose and repair  collections of robotic explorers.

• Reactive Model-based Programming Language

• Titan Model-based Executive

DEMONSTRATION:

Spheres on ISS (DARPA Funded) 
•Robust Station keeping (SIM)
•Robust Docking (MSR)Mars 09 Mobile Science Lab



At the Engineering level, Model-based Programs 
Interact Directly with State

Embedded programs interact with
plant sensors and actuators:

• Read sensors 

• Set actuators

Embedded Program

S
Plant

Obs Cntrl

Programmers must map 
between states and 
sensors/actuators.

Model-based programs 
interact with plant state:

• Read state

• Write state

Model-based
Embedded Program

S
Plant

Model-based executives map 
automatically between states and 
sensors/actuators.

S’
Model-based Executive

Obs Cntrl



Model-based Executives should

automate ALL reasoning about system interactions.

Engineering 
level:

•Command   
confirmation

•Diagnosis

•Commanding

•Configuration

•Repair

System level:

• Generation of 
contingencies. 

• Scheduling



System Model

CommandsObservations

Control Program

Plant

Titan Model-based ExecutiveRMPL Model-based Program

State goalsState estimates

Track
likely 
states

Find
best

target

Plan
reactively

System Level: Control Sequencer

� Executes concurrently
� Preempts
� Asserts and queries states
� Chooses based on reward
� Expresses temporal  and

resource constraints

Engineering Level: Deductive Controller

Generate target goal states
conditioned on state estimates



Orbital Insertion Example

EngineA EngineB

Science Camera

EngineA EngineB

Science Camera

Turn camera off and engine on



Control Program

Control program specifies 
state trajectories:

• fires one of two engines

• sets both engines to ‘standby’

• prior to firing engine, camera must be 
turned off to avoid plume contamination

• in case of primary engine failure, fire 
backup engine instead

OrbitInsert():: 

(do-watching ((EngineA = Firing) OR
(EngineB = Firing))

(parallel

(EngineA = Standby)

(EngineB = Standby)

(Camera = Off)

(do-watching (EngineA = Failed)

(when-donext ( (EngineA = Standby) AND 
(Camera = Off) )

(EngineA = Firing)))

(when-donext ( (EngineA = Failed) AND 
(EngineB = Standby) AND 
(Camera = Off) )

(EngineB = Firing))))



Given observations…
and command history…
executive infers “hidden 
state”

Hidden State
• States like (EngineA = Standby) are not DIRECTLY 

observable or controllable…

(thrust = zero) AND (power_in = nominal)

last command issued = “standbylast command issued = “standby--cmdcmd””

���� (EngineA = Standby)

Given state goals executive
infers “commands” [Turn on DriverA]; [Open ValveA]

• Thinking in terms of “hidden states” abstracts away 
complexity of robustly observing and controlling state. 

• Model-based executive raises assurance of software by 
correctly inferring and controlling states.



ClosedClosed

ValveValve
OpenOpen StuckStuck

openopen

StuckStuck
closedclosed

OpenOpen CloseClose
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0.010.01

0.010.01

inflow = outflow = 0

Synthesize Actions from 
Models of Complex Behavior

• Complex, discrete and qualitative behaviors 

• Anomalies and uncertainty

• Physical interactions

• Timing

• modeled through concurrency, hierarchy and non-determinism.

• modeled by probabilistic transitions

• modeled by discrete and continuous constraints

• modeled by simple temporal networks

Probabilistic Hierarchical Constraint Automata:

Intended
Behavior
of System

Possible
Behaviors
of Components



Example: The model-based program sets the state to thrusting, and 
the deductive controller . . . . 

Determines that valves
on the backup engine

will achieve thrust, and
plans needed actions.

Deduces that a valve 
failed - stuck closed

Plans actions
to open

six valves

Fuel tankFuel tankOxidizer tankOxidizer tank

Deduces that
thrust is off, and

the engine is healthy



Control
Sequencer

Model

Temporal plannerTemporal planner

Deductive ControllerDeductive Controller

Command

goals

Observations Flight System Control

RT Control Layer
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Recent Publications

Model-based Programming:
• B. C. Williams and M. Ingham, “Model-based 

Programming: Controlling Embedded Systems by 
Reasoning about Hidden State," to appear
International Conference on Constraint 
Programming, September 2002. 

MBP & Titan Executive 1. 0:
• B. C. Williams, M. Ingham, S. Chung and P. Elliott, 

“Model-based Programming of Intelligent 
Embedded Systems and Robotic Explorers," to 
appear Special Issue on Embedded Software, IEEE 
Proceedings.



Results: Analysis of Livingstone 
Deductive Algorithms

Issues:

• Would not explore complete diagnosis space.

• Would not maintain proper ranking of diagnoses 
in terms of posterior probability.

• Would not rule out all inconsistent diagnoses.

OPSAT:

• Extract Deductive core for solving Optimal Constraint 
Satisfaction problems.

• Extend to achieve optimality, completeness, and 
correctness.

• Empirically validate on randomized algorithms and extend



OPSAT

GenerateGenerate

BestBest
FeasibleFeasible
OptionsOptions

ConflictingConflicting
ElementsElements

CheckedChecked
optionoption

(Un)Sat Tests(Un)Sat Tests

Generate Best Options: 
•

Test Against Constraints: 
•



OPSAT

GenerateGenerate

BestBest
FeasibleFeasible
OptionsOptions

ConflictingConflicting
ElementsElements

CheckedChecked
optionoption

(Un)Sat Tests(Un)Sat Tests

Generate Best Options: 
• Conflicts generalize test to leap over leading infeasible options

Test Against Constraints: 
• Directed towards satisfying most constraints
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Increasing
Cost

Feasible

Infeasible

C
onflict 3

Conflict 2

Conflict 1

Conflict-directed A* 

• Feasible regions are described 
by the implicants of the conflicts 
(Kernel Assignments) 

•Want kernel assignment 
containing the best cost state.



U(A1), U(A2), 
U(M1), U(M3)

U(A1), U(M1) , U(M2)

• Kernel assignments are generated 
from conflicts by minimal set covering.

Conflicts

Conflict-directed A*: 
• To find best kernel, expand tree in best first order, 

exploiting preferential independence, preserve systematicity
• Explore subspace of kernel in best first order.
•Test with Incremental Sat algorithm (DPLL + TMS)

U(A1) U(M1) U(M1) & U(A2) U(M2) & U(M3)

U(A2) U(M1)

U(M3)U(A1)

U(A1) U(M1) U(M2)

• View minimal set covering as tree 
search.



U(A1), U(A2), 
U(M1), U(M3)

U(A1), U(M1) , U(M2)

How do we unify Generate and Test phases?

Clauses

Clause-directed A*: 
• Search in best first order, exploiting preferential independence.
• All else equal, direct towards assignments covering most clauses.
• Perform incremental unit propagation after each assignment.
� Produces best cost prime implicants.

U(A1) U(M1) U(M1) & U(A2) U(M2) & U(M3)

U(A2) U(M1)

U(M3)U(A1)

U(A1) U(M1) U(M2)

• Treat all clauses as conflicts.
• Direct towards covering clauses.



Recent Publications: 
Optimal CSPs & OpSat

Using conflicts to optimally direct the selection of 
decision variables.

• Williams, B.C. and R. Ragno, “Conflict-directed A* 
and its Role in Model-based Embedded Systems," 
to appear Special Issue on Theory and Applications 
of Satisfiability Testing, Journal of Discrete Applied 
Math.

Unifying Generation and SAT Testing through 
Clause-direction

• Ragno, R. “Clause-directed A*," Master’s Thesis, 
MIT EECS



Demonstration 1: Interferometer Testbed

Objective: Successful ground test-bed demonstration: 
1st step toward broader acceptance.

SIM TPF CommandsObservations

Track
likely 
states

Find
best

target

Plan
reactively

Deductive Controller
(lisp Livingstone)

Collaborators: JPL Caltech

Publication:
• Ingham, M., B. Williams, T. Lockhart, A. Oyake, M. Clark, A. 

Aljabri, “Autonomous Sequencing and Model-based Fault Protection 
for Space Interferometry,” International Symposium on AI and 
Robotics in Space, June 2001. 

Terminated: Spring 01



Demonstration 2 &3: 
Messenger On & Off Board

Objective: Demonstrate approach to Mode Estimation 
that is palatable to conservative missions.

ModesObservations

Compile 
Model

Activate
Conflicts

Generate
Diagnoses

Onboard Compile Mode 
Estimation(MiniME)

Collaborators: JHU APL Dave Watson, Mike Pekala…
Publication: Van Eepoel, J., B. Williams,S. Chung, “Improving Model-based 

Mode Estimation Through Offline Compiling,” International Symposium 
on AI and Robotics in Space, June 2001. 

Status:

• Funding delayed to 8th month, FY 01, 

• 1 month for Minime to reach Messenger PDR-> too late.

• Shifted to Titan ground station.

• Funding terminated after 4 months, still an excellent opportunity!

Messenger
Mission to
Mercury System Model

CommandsObservations

Control Program

State goalsState estimates

Track
likely 
states

Find
best

target

Plan
reactively

Control Sequencer

� Executes 
concurrently
� Preempts
� Asserts and 
queries states

Deductive Controller

Titan



Demonstration 4: TechSat 21 onboard 
Model-based Execution

Objective: Model-based Programming on board, operate full mission

Collaborators: 

• MIT Space Systems Lab (Miller, Sedgwick, How, Fesq), 

• MIT AI Lab (Shrobe, Ladagga, Sullivan, Roberston), 

• JPL AIG (Chien, Rabideau, Sherwood), AFRL

Publication: 
• Chien, S., R. Sherwood, M. Burl, R. Knight, G. Rabideau, B. Engelhardt, A. Davies, P.

Zetocha, R. Wainright, P. Klupar, P. Cappelaere, D. Surka, B.C. Williams, R. Greeley, V. 
Baker and J. Doan, “The Techsat-21 Autonomous Sciencecraft Constellation,” Int. Symp. 
on AI, Robotics and Automation in Space, St-Hubert, Canada, June 2001. 

Status:

• Started FY 99 under AFRL funding, augmented by DARPA Mobies

• Replaced by L2, January, 2002.

System Model

CommandsObservations

Control Program

State goalsState estimates

Track
likely 
states

Find
best

target

Plan
reactively

Control Sequencer

� Executes 
concurrently
� Preempts
� Asserts and 
queries states

Deductive Controller

Titan

TechSat 21
Air force
Radar
Interferometer



Demonstration 5 & 6: ST –7 Concept Study 
Model-based Programming at 
Engineering & System Levels

Objective: Demonstrate Model-based Programming on board at 
Engineering and Systems Levels, operate full mission

Collaborators: 

• JPL (Beam Group) AIG (Barret)

• JHU APL (Watson, Pekala) 

• NASA Ames (Muscettola, Morris)

Publication: 
• Fesq, L., et al. “Model-based Programming for Robotic Spacecraft” to appear, World Space 

Congress, 2002. 

Status:

• Completed integrated demo of System level (Kirk) and Eng. Level (Titan)

• Awaiting Mission level autonomy and IDEA for full integrated demo.

NASA ST7
Mission
Phase A

System Model

CommandsObservations

Control 
Program

State goalsState estimates

Track
likely 
states

Find
best

target

Plan
reactively

Kirk System Level

Schedule events dynamically
Schedule events dynamically

Search for optimal concurrent 
execution among contingencies

Search for optimal concurrent 
execution among contingencies

PlansPlan
Failures

� Executes concurrently
� Preempts
� Asserts and queries states
� Chooses based on reward
� Expresses temporal  and

resource constraints

Titan Engineering Level

ID
E

A

Europa
Mission-Level



Directions: Spheres on ISS

• Working to demonstrate Titan in flight on docking 
maneuvers for MIT Sphere’s Spacecraft within Intl. Space 
Station.

• Titan must manage mission in light of failures.

Funded by DARPA Orbital Express



Control Sequencer

System Model

CommandsObservations

Control Program

Plant

State goalsState estimates

Mode
Estimation

Mode
Reconfiguration

� Executes concurrently
� Preempts
� Asserts and queries states

Directions: Expanding Model-based Programming 
to the System-level: Titan + Kirk



Control Sequencer

System Model

CommandsObservations

Control Program

Plant

State goalsState estimates

Mode
Estimation

Mode
Reconfiguration

� Executes concurrently
� Preempts
� Asserts and queries states
� Chooses based on reward
� Expresses temporal 

constraints

Directions: Expanding Model-based Programming 
to the System-level: Titan + Kirk

Schedules events dynamicallySchedules events dynamically

Searches for optimal concurrent 
execution among contingencies

Searches for optimal concurrent 
execution among contingencies

PlansPlan Failures

hierarchical deterministic executionhierarchical deterministic execution

• Demonstrated for ST-7
• Integrated with LPGP on Rovers 
for contingent-opportunistic planning & 
execution



Heterogeneous Cooperative Robotics

• Orbiter

• Tethered 
Blimp

• Mobile 
Lander

• Scout 
Rovers

• Sensor 
Network



Indoor Testbed
• One ceiling mounted 

stereo camera “the blimp”
• 3 ATRV jr.
• 1 ATRV
• Rover Sensors

– Stereo camera head
– Sonar array
– Laser range scanner
– DGPS
– Wheel encoders
– Digital compass

• Motes Sensor Networks

Rover Rover SimSim



Obstacle Detection



Map Generation



RMPL Generated Mission

Waypoint 1

Waypoint 2
Waypoint 3

Rendezvous

Obstacles

Blimp Rovers

Start Point

demo on sim



Rover tracking during execution



Issues

As a university, how can we effectively 
establish a path for our technology to MSL, 
and other missions, and how do we secure 
funds to support this?



Model-based Execution 
for Space Vehicles

SPONSOR: NASA Code-R (CETDP)

DEVELOPMENT TEAM: MIT, [APL IS]

TASK OBJECTIVES:
Develop model-based embedded programming 
languages that think from commonsense models in 
order to robustly command, monitor, diagnose and 
repair  collections of robotic explorers.

NASA RELEVANCE:
•Provides high assurance software for space 
missions.
• Offers robust capabilities for command 
execution and fault management.
•Speeds time for development and testing of 
flight software.
•Dramatically expands ability to robustly respond 
to novel situations.

TECHNICAL INNOVATIONS:
•RMPL language reads and writes hidden state 
variables as if directly observable and controllable 
•Titan executive “reads” state by automatically 
deducing it from sensor information.
• Titan executive “sets” state by planning command 
sequences that move to the specified state.

Milestones 

XDevelop RMPL Compiler

XX
•Demonstrate on Distributed 
Space System Testbed(s)

XXDistributed RMPL executive

XXRMPL executive

FY04FY03FY02

MIT

MIT Cooperative Rover
Testbed

System Model

CommandsObservations

Control 
Program

State goalsState estimates

Track
likely 
states

Find
best

target

Plan
reactively

System Level: Control 
Sequencer

Schedule events dynamically
Schedule events dynamically

Search for optimal concurrent 
execution among contingencies

Search for optimal concurrent 
execution among contingencies

PlansPlan
Failures

� Executes concurrently
� Preempts
� Asserts and queries states
� Chooses based on reward
� Expresses temporal  and

resource constraints

Engineering Level: Deductive 
Controller
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Objective

Create a hybrid estimation, monitoring, diagnosis and model 
learning capability for physical devices that exhibit 
complex discrete and continuous behaviors. 

DEMONSTRATION:

JSC BIO-Plex

Mars Entry, descent & Landing



A Hybrid Discrete/Continuous System 
for Health Management
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Support:
• NASA IS

NASA BIO-Plex

• Failures can manifest themselves through a coupling of a system’s continuous 
dynamics and its evolution through different behavior modes
� must track over continuous state changes and discrete mode changes

• Symptoms are initially subtle; on the same scale as sensor/actuator noise
� need to extract mode estimates from subtle symptoms



Hybrid Plant Model for HME
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Concurrent Probabilistic Hybrid Automaton (CPHA):



Hybrid Mode / State Estimation

CPHA Model

estimated mode/state x = {xd ,xc}
and its belief state h[x]sensor signals yc and

control inputs uc , ud

Kalman
Filter Bank

yc(k)

uc(k-1)

Hybrid
Mode

Estimator
xci(k)

Pi(k)

^

Χk

Xk
^

Hybrid State Estimator
Maintains the set of most likely hybrid 
state estimates as a set of trajectories.

Hybrid Mode Estimator:
Determines for each trajectory the possible 
transitions, and specifies (dynamically) the 
candidate trajectories to be tracked by the 
continuous state estimators. 



Hybrid Mode / State Estimation

old estimate:
Xk-1={mi,xk-1}

X+
k-1={mj,xk-1}

new estimate:
Xk={mj,xk}

1. HMM-style belief state update 
determines the likelihood for 
each discrete mode transition.

2. Kalman-filter-style update
determines likelihood of 
continuous state evolution. 

# transitions at each time step is very large:
e.g. model with 10 components, each with 3 successor modes 
has 310 = 59049 possible successor modes for each trajectory!

How to handle the exponential blowup?

• Generalize beam search to track the most
promising hybrid states.

• Factor state space into lower dimensional 
subspaces through automated 
decomposition and filter synthesis.

x(k-1) x(k)PO
...

PT1

PT2

PT3

PTl

component
2

component
1

component
3

component
l

transition expansion estimation

h(k-1) h(k)



Simulation Result

components: 6 
( FR1, FR2, PIV1, PIV2, LS, PGC) 
total # of modes: 9600

fringe size: 20 (400 estimation steps): 
average candidates:  90.2   (< 1% !)
max. candidates: 428    (< 5 %!)
filter calculations: 242
filter executions: 36050

average runtime: ~1 s/step (PII-400, 128mb) 
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Recent Publications

Hybrid Mode Estimation:

• Hofbaur, M. W. and B.C. Williams, “Mode Estimation of 
Probabilistic Hybrid Systems,” International Conference on 
Hybrid Systems: Computation and Control, March, 2002.

Hybrid Expectation Maximization (preliminary):

• Melvin Henry, Simulators that Learn: Automated Estimation of 
Hybrid Automata, June 2002 

Hybrid Decomposition (preliminary):

• Hofbaur, M. W. and B. C. Williams, “Hybrid Diagnosis with 
Unknown Behavioral Modes,” International Workshop on 
Principles of Diagnosis, Austria, May 3-5 2002.



Future Directions

• Model-Learning as Hybrid EM

• Automated Decomposition of HPCA using 
Dissents

• Model-based Hybrid Execution



Idea: Support programmers with 
embedded languages that avoid 
commonsense mistakes, by reasoning 
from hardware models.

Polar Lander Leading Diagnosis:

• Legs deployed during descent.

• Noise spike on leg sensors latched by software 
monitors.

• Laser altimeter registers 50ft.

• Begins polling leg monitors to determine touch down.

• Latched noise spike read as touchdown.

• Engine shutdown at ~50ft. 

Reactive Model-based Programming

To Address the Scope of Mars 98

Responding to the failures of Mars 
Polar Lander and Mars Climate 
Orbiter is a Hybrid control 
problem.



Hybrid Model-based Programming
Hybrid Model-based 

Programs:
• Extend to include assertions 

and queries on continuous 
states.

S
Plant

Obs Cntrl

Model-based
Control Programs

Model-based
Executive

S’

Plant
Model

Support:
• NASA IS



Hybrid Model-based Programming

S
Plant

Obs Cntrl

Model-based
Control Programs

Model-based
Executive

S’

Plant
Model

Plant

RMPL Hybrid Model-based Executive

SequencerControl
Program

Plant
Model

Control actionsObservations

Estimation & Control Engines

Hybrid Executives:
• Deduce continuous as well as 

discrete states.
• Issue continuous as well as discrete 

control actions.

Hybrid State
Estimation

Hybrid State
Reconfiguration

att/pos 
goals

cont & discr
state estimates

h/w config
goals

Support:
• NASA IS



Hybrid Model-based Programming

S
Plant

Obs Cntrl

Model-based
Control Programs

Model-based
Executive

S’

Plant
Model

Plant

RMPL Hybrid Model-based Executive

SequencerControl
Program

Plant
Model

Control actionsObservations

Estimation & Control Engines

Hybrid Executives:
• Can hook into existing estimation and 

control approaches.
• Should target “comfort zone” of systems 

engineers.

Discrete Mode Est.

Continuous State Est.

State Estimation State Reconfiguration

Discrete Controller

Continuous Controller

att/pos 
goals

cont & discr
state estimates

h/w config
goals

Mars Entry, 
Descent &

Landing

Demonstration:



A Hybrid Discrete/Continuous System 
for Health Management

SPONSOR: NASA Code-R (Intelligent Systems)

DEVELOPMENT TEAM: MIT, JSC

TASK OBJECTIVES:
Create a hybrid monitoring, diagnosis and model 
learning capability for physical devices that exhibit 
complex discrete and continuous behaviors. 

NASA RELEVANCE:

Recent mission failures (e.g., Mars Climate 
Orbiter and Polar Lander) highlight the need 
for monitoring capabilities that detect subtle 
symptoms, and simulators that can be quickly 
tailored to a mission.  Our approach enables:

• predictive diagnosis and the detection of 
incipient failures that are hidden within noise.

• generation of estimators that track system 
state across changes in system modes.  

• prototyping of simulators that acquire their 
physical models automatically. 

TECHNICAL INNOVATIONS:
Dynamics are modeled as hybrid probabilistic 
concurrent automata (HPCA).  
Monitoring, diagnosis, state tracking and model 
learning framed as elements of an Expectation 
Maximization algorithm  for HPCA.

Milestones 

XHybrid Mode Estimation

X•Decomposition algorithms

XXDemonstration on Bioplex 
and Mars EDL

XLearning as Hybrid 
Expectation Maximization

FY04
FY0
3

FY0
2

MIT
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Mars Entry, 
Descent & Landing


